114 research outputs found

    Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    Get PDF
    BACKGROUND: As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. METHODS: Both subzero storage temperature as well as freezing rate were compared using control samples (4°C) and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C) prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C). Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. RESULTS: Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. CONCLUSIONS: Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures

    Origin of structural difference in metabolic networks with respect to temperature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolism is believed to adaptively shape-shift with changing environment. In recent years, a structural difference with respect to temperature, which is an environmental factor, has been revealed in metabolic networks, implying that metabolic networks transit with temperature. Subsequently, elucidatation of the origin of these structural differences due to temperature is important for understanding the evolution of life. However, the origin has yet to be clarified due to the complexity of metabolic networks.</p> <p>Results</p> <p>Consequently, we propose a simple model with a few parameters to explain the transitions. We first present mathematical solutions of this model using mean-field approximation, and demonstrate that this model can reproduce structural properties, such as heterogeneous connectivity and hierarchical modularity, in real metabolic networks both qualitatively and quantitatively. We next show that the model parameters correlate with optimal growth temperature. In addition, we present a relationship between multiple cyclic properties and optimal growth temperature in metabolic networks.</p> <p>Conclusion</p> <p>From the proposed model, we find that such structural properties are determined by the emergence of a short-cut path, which reduces the minimum distance between two nodes on a graph. Furthermore, we investigate correlations between model parameters and growth temperature; as a result, we find that the emergence of the short-cut path tends to be inhibited with increasing temperature. In addition, we also find that the short-cut path bypasses a relatively long path at high temperature when the emergence of the new path is not inhibited. Even further, additional network analysis provides convincing evidence of the reliability of the proposed model and its conclusions on the possible origins of differences in metabolic network structure.</p

    Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes

    Get PDF
    Components of the nuclear periphery coordinate a multitude of activities, including macromolecular transport, cell-cycle progression, and chromatin organization. Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport, mRNA processing, and transcriptional regulation, and NPC components can define regions of high transcriptional activity in some organisms at the nuclear periphery and nucleoplasm. Lineage-specific features underpin several core nuclear functions and in trypanosomatids, which branched very early from other eukaryotes, unique protein components constitute the lamina, kinetochores, and parts of the NPCs. Here we describe a phenylalanine-glycine (FG)-repeat nucleoporin, TbNup53b, that has dual localizations within the nucleoplasm and NPC. In addition to association with nucleoporins, TbNup53b interacts with a known trans-splicing component, TSR1, and has a role in controlling expression of surface proteins including the nucleolar periphery-located, procyclin genes. Significantly, while several nucleoporins are implicated in intranuclear transcriptional regulation in metazoa, TbNup53b appears orthologous to components of the yeast/human Nup49/Nup58 complex, for which no transcriptional functions are known. These data suggest that FG-Nups are frequently co-opted to transcriptional functions during evolution and extend the presence of FG-repeat nucleoporin control of gene expression to trypanosomes, suggesting that this is a widespread and ancient eukaryotic feature, as well as underscoring once more flexibility within nucleoporin function

    Aging, working memory capacity and the proactive control of recollection:An event-related potential study

    Get PDF
    The present study investigated the role of working memory capacity (WMC) in the control of recollection in young and older adults. We used electroencephalographic event-related potentials (ERPs) to examine the effects of age and of individual differences in WMC on the ability to prioritize recollection according to current goals. Targets in a recognition exclusion task were words encoded using two alternative decisions. The left parietal ERP old/new effect was used as an electrophysiological index of recollection, and the selectivity of recollection measured in terms of the difference in its magnitude according to whether recognized items were targets or non-targets. Young adults with higher WMC showed greater recollection selectivity than those with lower WMC, while older adults showed nonselective recollection which did not vary with WMC. The data suggest that aging impairs the ability to engage cognitive control effectively to prioritize what will be recollected

    Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities

    Get PDF

    Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics

    Get PDF

    Estimation of stroke volume changes by ultrasonic doppler.

    No full text
    • …
    corecore